Acta Crystallographica Section C
Crystal Structure
Communications
ISSN 0108-2701

From a-carbamoyl-a-cyanooxiranes to 3-halogenopyruvamides

Nina Lah, ${ }^{\text {a* }}$ Ivan Leban, ${ }^{\text {a }}$ Alenka Majcen-Le Maréchal, ${ }^{\text {b }}$ Philippe Le Grel, ${ }^{\text {c }}$ Albert Robert, ${ }^{\text {c }}$ Joachim Sieler ${ }^{\text {d }}$ and Gerald Giester ${ }^{\mathbf{e}}$
${ }^{\mathrm{a}}$ Faculty of Chemistry and Chemical Technology, University of Ljubljana, Aškerčeva 5, PO Box 537, SI-1001 Ljubljana, Slovenia, ${ }^{\text {b }}$ Faculty of Mechanical Engineering, Institute for Textile Chemistry, University of Maribor, SI-2000 Maribor, Slovenia, ' Laboratoire de Synthese et Electrosynthese Organiques, UMR 6510, Campus de Beaulieu, 35042 Rennes CEDEX, France, ${ }^{\text {d Institut für Anorganische }}$ Chemie, Universität Leipzig, Linnéstrasse 3, D-04103 Leipzig, Germany, and ${ }^{\mathbf{e}}{ }^{\mathbf{e}}$ nstitut für Mineralogie und Kristallographie, Universität Wien, Althanstrasse 14, A-1090 Wien, Austria
Correspondence e-mail: nina.lah@uni-lj.si

Received 24 May 2000
Accepted 19 June 2000
The crystal structures of the first stable α-diol from the α halogenopyruvamide series, 3-chloro-2,2-dihydroxy-3-phenylpropanamide, $\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{ClNO}_{3}$, and three products [3-(4-chloro-phenyl)-2-cyano-2,3-epoxypropanamide, $\mathrm{C}_{10} \mathrm{H}_{7} \mathrm{ClN}_{2} \mathrm{O}_{2}$, 3-bromo-2-cyano-2-hydroxy-3-p-tolylpropanamide, $\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{Br}$ $\mathrm{N}_{2} \mathrm{O}_{2}$, 3-bromo-2-oxo-3-p-tolylpropanamide, $\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{BrNO}_{2}$] obtained during the systematic synthesis of α-halogenopyruvamides are reported. The crystal structures are dominated by hydrogen bonds involving an amide group. The stability of the geminal diol could be ascribed to hydrogen bonds which involve both hydroxyl groups.

Comment

α-Halogenopyruvamides are of special interest since they are able to bind pyruvate-dependent enzymes without being recognized as substrates during the catalytic process (Fisher et al., 1982; Hübner et al., 1988). A simple and efficient way of forming substituted 3-halogenopyruvamides from substituted α-carbamoyl- α-cyanooxiranes has been described previously (Majcen-Le Maréchal et al., 1994). As members of the α haloketone family, α-halogenopyruvamides are also of interest in the synthesis of heterocyclic compounds with important biological activity. As potential bielectrophiles they can react with many oxygen, nitrogen and sulfur binucleophiles. In this paper, we report the crystal structures of three products, (I), (II) and (III), obtained during the synthesis of α halogenopyruvamides, which undergo a hydration reaction at the ketone group to form α-diols (Majcen-Le Maréchal et al., 1997). We also report the crystal structure of a stable geminal diol, (IV), which seems to be the only one characterized in the solid state in this series of compounds.

Compound (I) (Fig. 1) is an oxirane in which the two $\mathrm{C}-\mathrm{O}$ bond lengths of the oxirane ring are significantly different. The $\mathrm{C}-\mathrm{O}$ distance near the cyano group is shorter $[1.422(2) \AA]$ than the remote $\mathrm{C}-\mathrm{O}$ bond $[1.434$ (2) \AA]. This is in agreement with the results of the survey of oxirane structures in the

Cambridge Structural Database (CSD) (Allen \& Kennard, 1993) performed by Clegg et al. (1995). It was found that in the case of oxiranes containing strongly electron-withdrawing substituents (cyano, nitro or sulfonyl group), the near $\mathrm{C}-\mathrm{O}$ bond is shortened and the remote one lengthened slightly. Two

Figure 1
ORTEPIII (Burnett \& Johnson, 1996) view of (I) with atomic numbering. Anisotropic displacement ellipsoids are drawn at the 30% probability level. H atoms are of arbitrary size.

Figure 2
ORTEPIII (Burnett \& Johnson, 1996) view of (II) with atomic numbering. Anisotropic displacement ellipsoids are drawn at the 30% probability level. H atoms are of arbitrary size.

Figure 3
ORTEPIII (Burnett \& Johnson, 1996) view of (III) with atomic numbering. Anisotropic displacement ellipsoids are drawn at the 30% probability level. H atoms are of arbitrary size.
adjacent molecules are connected by two $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ bonds symmetry-related by an inversion centre. Another type of intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond is involved in the chain formation of stacked molecule pairs propagated down the a axis.

The molecular structure of compound (II) is illustrated in Fig. 2. Bond lengths and angles are in agreement with values reported for other organic compounds (Allen et al., 1987). Two intermolecular hydrogen bonds are formed in the crystal. N1 acts as a donor to the N atom of the cyano group N 2 at $(x-1$, $y, z-1$) while the hydroxyl O atom acts as a donor to the amide oxygen O 1 at $(1+x, y, z)$.

The molecular structure of compound (III) is presented in Fig. 3. Distances and angles are typical for organic structures, except for the $\mathrm{C} 3-\mathrm{Br}$ distance, 1.995 (4) \AA, which is longer than the upper quartile of $\mathrm{Csp}{ }^{3}-\mathrm{Br}$ bond lengths for reported structures (Allen et al., 1987). As expected, the crystal structure is dominated by hydrogen-bond interactions of amideamide type. Molecules are linked via head-to-head amideamide hydrogen bonds similar to those of compound (I) which form pairs of molecules [N 1 acts as a donor to O 1 at $(-x+1$, $-y+1,-z+1)]$ connected in infinite chains along \mathbf{c} by an additional amide-amide hydrogen bond [N 1 as donor to O 1 at $\left.\left(x,-y+1, z+\frac{1}{2}\right)\right]$.

The crystal structure of compound (IV) is depicted in Fig. 4. The geometry about the C 2 atom is close to tetrahedral with the slight expansion of the $\mathrm{O} 2-\mathrm{C} 2-\mathrm{O} 3$ angle to $112.33(15)^{\circ}$.

Figure 4
ORTEPIII (Burnett \& Johnson, 1996) view of (IV) with atomic numbering. Anisotropic displacement ellipsoids are drawn at the 30% probability level. H atoms are of arbitrary size.

This distortion from regular tetrahedron could be the result of the repulsion of the lone-pair electrons of the hydroxyl O atoms. A survey of the CSD (Allen \& Kennard, 1993) gave only 12 structures of geminal diols for which the parent Csp ${ }^{3}$ atom is not a part of a cyclic system. A similar deformation of the $\mathrm{O}-\mathrm{C}-\mathrm{O}$ angle was observed in most cases. Both hydroxyl groups are involved in hydrogen bonds. Molecules are linked together in infinite chains parallel to the [001] direction with two additional intermolecular hydrogen bonds; O 2 acts as a donor to the hydroxyl O 1 atom of a neighbouring molecule at $(x, y, z+1)$, while O 3 acts as a donor to O 1 at $(x$, $\left.-y, z+\frac{1}{2}\right)$.

Experimental

The oxirane (I) was prepared by selective hydrolysis of dicyanooxirane as described by Majcen-Le Maréchal et al. (1994). The cyanohydrin (II) and the pyruvamide (III) were obtained according to a procedure of Majcen-Le Maréchal et al. (1994). The stable α-diol was prepared by heating the corresponding pyruvamide $(1.0 \mathrm{mmol})$ in water (10 ml) for 45 min at 333 K . After cooling, the solvent was partially removed in vacuo. The product was filtered off, washed with water and dried. Crystals of all four compounds suitable for singlecrystal X-ray diffraction were selected directly from the analytical samples. Unfortunately, it was impossible to obtain suitable crystals of all products from the same starting material. Compounds (II) to (IV) have different substituents on the phenyl ring and contain different halogens, but all were prepared by the same synthesis scheme.

Compound (I)

Crystal data

$\mathrm{C}_{10} \mathrm{H}_{7} \mathrm{ClN}_{2} \mathrm{O}_{2}$
$D_{x}=1.420 \mathrm{Mg} \mathrm{m}^{-3}$
$M_{r}=222.63$
Monoclinic, $P 2_{1} / c$
$a=4.9992$ (8) \AA
Mo $K \alpha$ radiation
$b=12.694$ (3) A
$c=16.442(3) \AA$
$\beta=93.540(10)^{\circ}$
$V=1041.4$ (4) \AA^{3}
$Z=4$

Cell parameters from 25 reflections $\theta=10-15^{\circ}$
$\mu=0.346 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Prismatic, colourless
$0.30 \times 0.30 \times 0.25 \mathrm{~mm}$

Table 1
Selected geometric parameters $\left(\AA{ }^{\circ}{ }^{\circ}\right)$ for (I).

$\mathrm{N} 1-\mathrm{C} 1$	$1.318(2)$	$\mathrm{C} 3-\mathrm{C} 4$	$1.487(3)$
$\mathrm{C} 1-\mathrm{O} 1$	$1.226(2)$	$\mathrm{C} 4-\mathrm{C} 5$	$1.386(3)$
$\mathrm{C} 1-\mathrm{C} 2$	$1.508(2)$	$\mathrm{C} 4-\mathrm{C} 9$	$1.391(3)$
$\mathrm{C} 2-\mathrm{O} 2$	$1.422(2)$	$\mathrm{C} 5-\mathrm{C} 6$	$1.389(3)$
$\mathrm{C} 2-\mathrm{C} 10$	$1.459(2)$	$\mathrm{C} 6-\mathrm{C} 7$	$1.381(3)$
$\mathrm{C} 2-\mathrm{C} 3$	$1.491(3)$	$\mathrm{C} 7-\mathrm{C} 8$	$1.373(3)$
$\mathrm{C} 10-\mathrm{N} 2$	$1.132(3)$	$\mathrm{C} 7-\mathrm{C} 1$	$1.745(2)$
$\mathrm{C} 3-\mathrm{O} 2$	$1.434(2)$	$\mathrm{C} 8-\mathrm{C} 9$	$1.384(3)$
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{N} 1$	$125.49(17)$	$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 2$	$121.88(16)$
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2$	$118.63(14)$	$\mathrm{C} 2-\mathrm{O} 2-\mathrm{C} 3$	$62.96(11)$
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2$	$115.87(15)$	$\mathrm{C} 5-\mathrm{C} 4-\mathrm{C} 9$	$119.63(18)$
$\mathrm{O} 2-\mathrm{C} 2-\mathrm{C} 10$	$116.49(15)$	$\mathrm{C} 5-\mathrm{C} 4-\mathrm{C} 3$	$119.20(17)$
$\mathrm{O} 2-\mathrm{C} 2-\mathrm{C} 3$	$58.89(11)$	$\mathrm{C} 9-\mathrm{C} 4-\mathrm{C} 3$	$121.16(18)$
$\mathrm{C} 10-\mathrm{C} 2-\mathrm{C} 3$	$119.11(15)$	$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$	$120.31(19)$
$\mathrm{O} 2-\mathrm{C} 2-\mathrm{C} 1$	$117.53(13)$	$\mathrm{C} 7-\mathrm{C} 6-\mathrm{C} 5$	$118.9(2)$
$\mathrm{C} 10-\mathrm{C} 2-\mathrm{C} 1$	$114.35(15)$	$\mathrm{C} 8-\mathrm{C} 7-\mathrm{C} 6$	$121.66(19)$
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 1$	$119.31(15)$	$\mathrm{C} 8-\mathrm{C} 7-\mathrm{Cl}$	$118.78(17)$
$\mathrm{N} 2-\mathrm{C} 10-\mathrm{C} 2$	$178.5(2)$	$\mathrm{C} 6-\mathrm{C} 7-\mathrm{Cl}$	$119.51(17)$
$\mathrm{O} 2-\mathrm{C} 3-\mathrm{C} 4$	$117.63(16)$	$\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 9$	$119.3(2)$
$\mathrm{O} 2-\mathrm{C} 3-\mathrm{C} 2$	$58.15(11)$	$\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 4$	$120.2(2)$

Table 2
Hydrogen-bonding geometry $\left(\AA,^{\circ}\right)$ for (I).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 2 \cdots \mathrm{O}^{\mathrm{i}}$	0.86	2.34	$2.911(2)$	124.0
$\mathrm{~N} 1-\mathrm{H} 1 \cdots 1^{\mathrm{ii}}$	0.86	2.04	$2.903(2)$	178.2

Symmetry codes: (i) $1+x, y, z$; (ii) $1-x,-y,-1-z$.

Data collection

Stadi4 diffractometer $\omega / 2 \theta$ scans
3492 measured reflections
2533 independent reflections
1852 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.025$
$\theta_{\text {max }}=28^{\circ}$

$$
\begin{aligned}
& h=-6 \rightarrow 6 \\
& k=-16 \rightarrow 15 \\
& l=-22 \rightarrow 21 \\
& 3 \text { standard reflections } \\
& \quad \text { every } 300 \text { reflections } \\
& \text { intensity decay: } 0.8 \%
\end{aligned}
$$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.048$
$w R\left(F^{2}\right)=0.152$
$S=1.032$
2533 reflections
147 parameters
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0811 P)^{2}\right.$
$+0.2445 P]$
where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$

Compound (II)

Crystal data

$\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{BrN}_{2} \mathrm{O}_{2}$	$D_{x}=1.595 \mathrm{Mg} \mathrm{m}^{-3}$
$M_{r}=283.13$	Mo $K \alpha$ radiation
Monoclinic, $P 2_{1} / a$	Cell parameters from 25
$a=5.934(3) \AA$	reflections
$b=33.653(6) \AA$	$\theta=8-16^{\circ}$
$c=6.1770(10) \AA$	$\mu=3.474 \mathrm{~mm}^{-1}$
$\beta=107.12(3)^{\circ}$	$T=293(2) \mathrm{K}$
$V=1178.9(7) \AA^{3}$	Prismatic, colourless
$Z=4$	$0.12 \times 0.10 \times 0.05 \mathrm{~mm}$

Table 3
Selected geometric parameters $\left(\AA,^{\circ}\right)$ for (II).

$\mathrm{N} 1-\mathrm{C} 1$	$1.308(4)$	$\mathrm{C} 3-\mathrm{Br}$	$1.975(3)$
$\mathrm{C} 1-\mathrm{O} 1$	$1.221(4)$	$\mathrm{C} 4-\mathrm{C} 5$	$1.386(4)$
$\mathrm{C} 1-\mathrm{C} 2$	$1.547(4)$	$\mathrm{C} 4-\mathrm{C} 9$	$1.388(4)$
$\mathrm{C} 2-\mathrm{O} 2$	$1.390(3)$	$\mathrm{C} 5-\mathrm{C} 6$	$1.390(5)$
$\mathrm{C} 2-\mathrm{C} 10$	$1.486(4)$	$\mathrm{C} 6-\mathrm{C} 7$	$1.390(5)$
$\mathrm{C} 2-\mathrm{C} 3$	$1.548(4)$	$\mathrm{C} 7-\mathrm{C} 8$	$1.377(5)$
$\mathrm{C} 10-\mathrm{N} 2$	$1.136(4)$	$\mathrm{C} 7-\mathrm{C} 11$	$1.502(5)$
$\mathrm{C} 3-\mathrm{C} 4$	$1.501(4)$	$\mathrm{C} 8-\mathrm{C} 9$	$1.380(5)$
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{N} 1$	$126.3(3)$	$\mathrm{C} 2-\mathrm{C} 3-\mathrm{Br}$	$108.98(18)$
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2$	$118.4(3)$	$\mathrm{C} 5-\mathrm{C} 4-\mathrm{C} 9$	$118.3(3)$
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2$	$115.2(3)$	$\mathrm{C} 5-\mathrm{C} 4-\mathrm{C} 3$	$123.5(3)$
$\mathrm{O} 2-\mathrm{C} 2-\mathrm{C} 10$	$111.2(2)$	$\mathrm{C} 9-\mathrm{C} 4-\mathrm{C} 3$	$118.2(2)$
$\mathrm{O} 2-\mathrm{C} 2-\mathrm{C} 1$	$109.3(2)$	$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$	$120.3(3)$
$\mathrm{C} 10-\mathrm{C} 2-\mathrm{C} 1$	$106.7(2)$	$\mathrm{C} 7-\mathrm{C} 6-\mathrm{C} 5$	$121.3(3)$
$\mathrm{O} 2-\mathrm{C} 2-\mathrm{C} 3$	$114.8(2)$	$\mathrm{C} 8-\mathrm{C} 7-\mathrm{C} 6$	$117.7(3)$
$\mathrm{C} 10-\mathrm{C} 2-\mathrm{C} 3$	$108.6(2)$	$\mathrm{C} 8-\mathrm{C} 7-\mathrm{C} 11$	$121.0(3)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$105.9(2)$	$\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 11$	$121.3(3)$
$\mathrm{N} 2-\mathrm{C} 10-\mathrm{C} 2$	$177.6(3)$	$\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 9$	$121.5(3)$
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 2$	$115.1(2)$	$\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 4$	$120.9(3)$
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{Br}$	$110.67(19)$		

Table 4
Hydrogen-bonding geometry ($\AA^{\circ},^{\circ}$) for (II).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 2 A \cdots \mathrm{~N} 2^{\mathrm{i}}$	0.86	2.41	$3.269(5)$	172.8
$\mathrm{O} 2-\mathrm{H} 1 \cdots 1^{\mathrm{ii}}$	0.82	1.87	$2.677(3)$	165.8

Symmetry codes: (i) $x-1, y, z-1$; (ii) $1+x, y, z$.

Data collection

Nonius CAD-4 diffractometer	$R_{\text {int }}=0.077$
$\omega / 2 \theta$ scans	$\theta_{\max }=27.91^{\circ}$
Absorption correction: refined from	$h=-7 \rightarrow 7$
ΔF (Walker \& Stuart, 1983)	$k=-44 \rightarrow 44$
$T_{\min }=0.631, T_{\max }=0.855$	$l=-8 \rightarrow 8$
11169 measured reflections	3 standard reflections
2836 independent reflections	every 500 reflections
1851 reflections with $I>2 \sigma(I)$	intensity decay: 1.9%

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.040$
$w R\left(F^{2}\right)=0.108$
$S=0.971$
2836 reflections
146 parameters

H -atom parameters constrained

$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0705 P)^{2}\right]$
where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.001$
$\Delta \rho_{\max }=0.54 \mathrm{e}^{-3}$
$\Delta \rho_{\text {min }}=-0.51 \mathrm{e}^{-3}$

Compound (III)

Crystal data
$\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{BrNO}_{2}$
$M_{r}=256.10$
Monoclinic, $C 2 / c$
$a=22.614$ (5) A
$b=10.257(2) \AA$
$c=10.099(2) \AA$
$\beta=114.32(3)^{\circ}$
$V=2134.6(8) \AA^{3}$
$Z=8$
$D_{x}=1.594 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 3833 reflections
$\theta=2.83-26.0^{\circ}$
$\mu=3.825 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Prismatic, colourless
$0.22 \times 0.20 \times 0.20 \mathrm{~mm}$

Data collection

Nonius KappaCCD diffractometer $\quad \theta_{\max }=26^{\circ}$
$1^{\circ} \varphi$ and ω scans
3833 measured reflections
1966 independent reflections
1372 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.021$
$h=-27 \rightarrow 27$
$h=-27 \rightarrow 21$
$k=-12 \rightarrow 12$
$l=-10 \rightarrow 10$
Intensity decay: 1.1%

Table 5
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$ for (III).

$\mathrm{Br}-\mathrm{C} 3$	$1.995(4)$	$\mathrm{C} 4-\mathrm{C} 5$	$1.379(5)$
$\mathrm{O} 2-\mathrm{C} 2$	$1.212(4)$	$\mathrm{C} 4-\mathrm{C} 9$	$1.399(5)$
$\mathrm{O} 1-\mathrm{C} 1$	$1.225(4)$	$\mathrm{C} 5-\mathrm{C} 6$	$1.381(6)$
$\mathrm{N} 1-\mathrm{C} 1$	$1.322(4)$	$\mathrm{C} 6-\mathrm{C} 7$	$1.366(6)$
$\mathrm{C} 1-\mathrm{C} 2$	$1.526(5)$	$\mathrm{C} 7-\mathrm{C} 8$	$1.384(7)$
$\mathrm{C} 2-\mathrm{C} 3$	$1.500(5)$	$\mathrm{C} 7-\mathrm{C} 11$	$1.510(6)$
$\mathrm{C} 3-\mathrm{C} 4$	$1.485(5)$	$\mathrm{C} 8-\mathrm{C} 9$	$1.380(6)$
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{N} 1$	$124.4(3)$	$\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 1$	$116.5(3)$
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2$	$121.1(3)$	$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 2$	$118.7(3)$
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2$	$114.5(3)$	$\mathrm{C} 4-\mathrm{C} 3-\mathrm{Br}$	$110.0(3)$
$\mathrm{O} 2-\mathrm{C} 2-\mathrm{C} 3$	$123.8(3)$	$\mathrm{C} 2-\mathrm{C} 3-\mathrm{Br}$	$101.2(2)$
$\mathrm{O} 2-\mathrm{C} 2-\mathrm{C} 1$	$119.6(3)$	$\mathrm{C} 5-\mathrm{C} 4-\mathrm{C} 3$	$119.8(3)$

Table 6
Hydrogen-bonding geometry ($\AA,^{\circ}$) for (III).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 2 \cdots \mathrm{O}^{\mathrm{i}}$	0.86	2.11	$2.885(4)$	148.9
$\mathrm{~N} 1-\mathrm{H} 1 \cdots 1^{\mathrm{ii}}$	0.86	2.13	$2.988(4)$	173.4

Symmetry codes: (i) $x, 1-y, \frac{1}{2}+z$; (ii) $1-x, 1-y, 1-z$.

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.039$
$w R\left(F^{2}\right)=0.109$
$S=0.973$
1966 reflections
139 parameters
H -atom parameters constrained

$$
w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0678 P)^{2}\right]
$$

where $P=\left(F_{o}{ }^{2}+2 F_{c}^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\text {max }}=0.64 \mathrm{e}^{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-0.39 \mathrm{e}^{-3}$
Extinction correction: SHELXL97 (Sheldrick, 1997)
Extinction coefficient: 0.0038 (6)

Compound (IV)

Crystal data

$\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{ClNO}_{3}$
$M_{r}=215.63$
Monoclinic, $C c$
$a=5.5260(10) \AA$
$b=29.989$ (6) \AA
$c=5.9970$ (10) A
$\beta=107.96(3)^{\circ}$
$V=945.4(3) \AA^{3}$
$Z=4$
$D_{x}=1.515 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 1798 reflections
$\theta=2.72-25.99^{\circ}$
$\mu=0.383 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Prismatic, colourless
$0.40 \times 0.35 \times 0.25 \mathrm{~mm}$

Data collection

Nonius KappaCCD diffractometer
$1^{\circ} \varphi$ and ω scans
1798 measured reflections
1781 independent reflections
1550 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.023$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.028$
$w R\left(F^{2}\right)=0.063$
$S=1.006$
1781 reflections
137 parameters
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0287 P)^{2}\right]$
where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$

Table 8
Hydrogen-bonding geometry $\left(\AA,^{\circ}\right)$ for (IV).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
O2-H21 ${ }^{2} \mathrm{O}^{\mathrm{i}}$	0.82	1.99	$2.789(2)$	163.4
O3-H31 $^{\mathrm{i}}{ }^{\text {ii }}$	0.82	1.99	$2.809(2)$	171.9

Symmetry codes: (i) $x, y, 1+z$; (ii) $x,-y, \frac{1}{2}+z$.

The space groups were deduced from the systematic absences and intensity statistics. H atoms were placed at calculated positions and refined as riding atoms $(\mathrm{C}-\mathrm{H}=0.93-0.98 \AA$, for each compound). For compound (IV), 941 independent reflections together with 840 Friedel equivalents were measured. The value of the Flack (1983) parameter $[0.50(5)]$ indicates racemic twinning of the crystal.

For compound (I), data collection and cell refinement: DIF4 (Stoe, 1992); data reduction: REDU4 (Stoe, 1992). For compound (II), data collection: CAD-4 Software (Enraf-Nonius, 1994); cell refinement: PARAM (Stewart et al., 1976); data reduction: DATRD2 in NRCVAX (Gabe et al., 1989). For compounds (III) and (IV), data collection: COLLECT (Nonius, 1998); cell refinement and data reduction: DENZO and SCALEPACK (Otwinowski \& Minor, 1997). For all compounds, program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPIII (Burnett \& Johnson, 1996); software used to prepare material for publication: SHELXL97.

The financial support of the Ministry for Science and Technology, Republic of Slovenia, through grant Nos. J1-7313103 and PS-511, is gratefully acknowledged.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: GD1105). Services for accessing these data are described at the back of the journal.

References

Allen, F. H. \& Kennard, O. (1993). Chem. Des. Autom. News, 8, 31-37.
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-S19.

Burnett, M. N. \& Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895, revised. Oak Ridge National Laboratory, Tennessee, USA.
Clegg, W., Ranelli, M. \& Jackson, R. F. W. (1995). Acta Cryst. C51, 1604-1606.
Enraf-Nonius (1994). CAD-4 Software. Version 5.1. Enraf-Nonius, Delft, The Netherlands.
Fisher, G., Sieber, M. \& Schellenberger, A. (1982). Bioorg. Chem. 11, 478-484.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Gabe, E. J., Le Page, Y., Charland, J.-P., Lee, F. L. \& White, J. (1989). J. Appl. Cryst. 22, 384-387.
Hübner, G., König, S. \& Schellenberger, A. (1988). Biomed. Chim. Acta, 47, 918.

Majcen-Le Maréchal, A., Le Grel, P., Robert, A. \& Pavc, J. (1997). Tetrahedron, 53, 13739-13748.
Majcen-Le Maréchal, A., Pavc, J., Robert, A. \& Le Grel, P. (1994). J. Chem. Soc. Perkin Trans. 1, pp. 2045-2046.
Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.
Otwinowski, Z. \& Minor, W. (1997). Methods Enzymol. 276, 307-326.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Stewart, J. M., Machin, P. A., Dickinson, C. W., Ammon, H. L., Heck, H. \& Flack, H. (1976). The XRAY76 System. Technical Report TR-446. Computer Science Center, University of Maryland, College Park, Maryland, USA.
Stoe \& Cie (1992). DIF4 (Version 7.09/DOS) and REDU4 (Version 7.03). Stoe \& Cie, Darmstadt, Germany.
Walker, N. \& Stuart, D. (1983). Acta Cryst. A39, 158-166.

